A Robust Decision Tree Algorithm for Imbalanced Data Sets

نویسندگان

  • Wei Liu
  • Sanjay Chawla
  • David A. Cieslak
  • Nitesh V. Chawla
چکیده

We propose a new decision tree algorithm, Class Confidence Proportion Decision Tree (CCPDT), which is robust and insensitive to class distribution and generates rules which are statistically significant. In order to make decision trees robust, we begin by expressing Information Gain, the metric used in C4.5, in terms of confidence of a rule. This allows us to immediately explain why Information Gain, like confidence, results in rules which are biased towards the majority class. To overcome this bias, we introduce a new measure, Class Confidence Proportion (CCP), which forms the basis of CCPDT. To generate rules which are statistically significant we design a novel and efficient top-down and bottom-up approach which uses Fisher’s exact test to prune branches of the tree which are not statistically significant. Together these two changes yield a classifier that performs statistically better than not only traditional decision trees but also trees learned from data that has been balanced by well known sampling techniques. Our claims are confirmed through extensive experiments and comparisons against C4.5, CART, HDDT and SPARCCC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MMDT: Multi-Objective Memetic Rule Learning from Decision Tree

In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...

متن کامل

School of IT Technical Report DECISION TREES FOR IMBALANCED DATA SETS

We propose a new variant of decision tree for imbalanced classification. Decision trees use a greedy approach based on information gain to select the attribute to split. We express information again in terms of confidence and show that like confidence, information gain is biased towards the majority class. We overcome the bias of information gain by embedding a new measure, the ratio of confide...

متن کامل

C4.5 and Imbalanced Data sets: Investigating the effect of sampling method, probabilistic estimate, and decision tree structure

Imbalanced data sets are becoming ubiquitous, as many applications have very few instances of the “interesting” or “abnormal” class. Traditional machine learning algorithms can be biased towards majority class due to over-prevalence. It is desired that the interesting (minority) class prediction be improved, even if at the cost of additional majority class errors. In this paper, we study three ...

متن کامل

An experimental comparison of classification techniques for imbalanced credit scoring data sets using SAS® Enterprise MinerTM

In this paper, we set out to compare several techniques that can be used in the analysis of imbalanced credit scoring data sets. In a credit scoring context, imbalanced data sets frequently occur as the number of defaulting loans in a portfolio is usually much lower than the number of observations that do not default. As well as using traditional classification techniques such as logistic regre...

متن کامل

An experimental comparison of classification algorithms for imbalanced credit scoring data sets

In this paper, we set out to compare several techniques that can be used in the analysis of imbalanced credit scoring data sets. In a credit scoring context, imbalanced data sets frequently occur as the number of defaulting loans in a portfolio is usually much lower than the number of observations that do not default. As well as using traditional classification techniques such as logistic regre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010